R/extract_from_hmmer.R
extract_from_hmmer.Rd
Split a column composed of nested lists into multiple columns.
extract_from_hmmer(data, column = "hits.domains")
Dataframe whose column is going to be splitted.
Column to split.
A DataFrame with columns column
splitted into
several columns.
data(phmmer_2abl)
extract_from_hmmer(
data = phmmer_2abl,
column = "hits.domains"
)
#> # A tibble: 35 × 85
#> algor…¹ uuid stats…² stats…³ stats…⁴ stats.Z stats…⁵ stats…⁶ stats…⁷ stats…⁸
#> <chr> <chr> <dbl> <int> <chr> <dbl> <int> <int> <int> <int>
#> 1 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 2 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 3 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 4 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 5 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 6 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 7 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 8 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 9 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> 10 phmmer DCF1… 1 545 0.11 565928 0 14388 545 565928
#> # … with 25 more rows, 75 more variables: stats.user <dbl>,
#> # stats.domZ_setby <int>, stats.n_past_bias <int>, stats.sys <dbl>,
#> # stats.n_past_fwd <int>, stats.total <dbl>, stats.nmodels <int>,
#> # stats.nincluded <int>, stats.n_past_vit <int>, stats.nreported <int>,
#> # stats.domZ <dbl>, hits.archScore <chr>, hits.ph <chr>, hits.arch <chr>,
#> # hits.kg <chr>, hits.ndom <int>, hits.extlink <chr>, hits.acc2 <chr>,
#> # hits.taxid <chr>, hits.acc <chr>, hits.taxlink <chr>, hits.desc <chr>, …